Informationssystem der Friedrich-Alexander-Universität Erlangen-Nürnberg © Config eG 
FAU Logo
  Sammlung/Stundenplan    Modulbelegung Home  |  Rechtliches  |  Kontakt  |  Hilfe    
Suche:      Semester:   
ACHTUNG: seit 15.06.2022 werden Lehrveranstaltungen nur noch über Campo verwaltet. Diese Daten in UnivIS sind nicht mehr auf aktuellem Stand!

Communications Engineering (Master of Science) >>

  AI-enabled wireless networks (AInet(A))

Dr. Mehdi Harounabadi

2 SWS, benoteter Schein, ECTS-Studium, ECTS-Credits: 2,5, Sprache Englisch
Zeit und Ort: Di 16:15 - 17:45, 00.151-113

Studienfächer / Studienrichtungen
WF ICT-MA ab 1
WF ASC-MA ab 1

Voraussetzungen / Organisatorisches
Rapid growth in the number of connected wireless nodes such as mobile phones, low power IoT devices, connected vehicles, etc. will expand the scale of the next generation of wireless and mobile networks. Moreover, the foreseen use cases like connected autonomous vehicles, smart homes and cities, ultra-fast and reliable industrial wireless networks, etc. will require ultra-low latency and highly reliable communication. Existing and traditional algorithms are not feasible for the optimization and management of such networks to fulfill the requirements of the emerging use cases due to their high complexity, high dynamicity, and the massive amount of the generated data by connected devices. Recently, artificial intelligence (AI) is planned to be utilized as a new paradigm for the design, development and optimization of the next generation wireless and mobile networks. Machine learning (ML) as a subset of AI will be applied to develop intelligent wireless nodes and infrastructures to address the demands of future use cases.

This course introduces machine learning algorithms such as supervised, unsupervised, reinforcement, deep, and federated learning and their application in the next generation wireless and mobile networks. Different ML use cases are explained which solve problems in different layers of the protocol stack from the physical layer to the application layer. The course includes the following topics:

1. Introduction to machine learning algorithms
2. Python programming language and its ML tools
3. AI-enabled wireless and mobile networks
3.1 Cellular networks and ML use cases
3.1.1 History of 2G to 4G, 5G and 6G vision
3.1.2 ML use cases in physical, MAC and higher layers
3.2 5G-V2X (cellular-V2X) and ML use cases
3.2.1 Sidelink communication as the key enabler
3.2.2 5G-V2X features and use cases
3.2.3 ML use cases in 5G-V2X
3.3 Intelligent wireless networks
3.3.1 Cognitive radio networks
3.3.2 ML use case in wireless networks
4. Standardization activities on AI-enabled wireless networks
4.1.1 3GPP and 5GAA
4.1.2 ETSI Zero touch networks

Literature review on the application of machine learning in wireless networks
The exercise of this course includes a literature review research project where students work individually on a relevant topic. The steps to accomplish the research project are as follows:

A. Select a topic relevant to the application of ML in wireless networks and register it by email
B. Search for the relevant papers and make a list of papers
C. Study the papers and prepare a summary
D. Present the outcomes
Each student should present her/his research study in an intermediate and a final presentation. A summary paper should be written following the "survey papers guideline" using IEEE format.
The grade of the research project will be considered as a "Bonus point" (up to 20%) for the final grade.
(automatisch geplant, erwartete Hörerzahl original: 25, fixe Veranstaltung: nein)

Empfohlene Literatur

• Dahlman, Erik, Stefan Parkvall, and Johan Skold. 5G NR: The next generation wireless access technology. Academic Press, 2020.
• Sun, Yaohua, et al. "Application of machine learning in wireless networks: Key techniques and open issues." IEEE Communications Surveys & Tutorials 21.4 (2019): 3072-3108.
• Harounabadi, Mehdi, et al. "V2X in 3GPP Standardization: NR Sidelink in Release-16 and Beyond." IEEE Communications Standards Magazine 5.1 (2021): 12-21.
• Xie, Junfeng, et al. "A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges." IEEE Communications Surveys & Tutorials 21.1 (2018): 393-430.

Credits: 2,5

Zusätzliche Informationen
Erwartete Teilnehmerzahl: 25

Verwendung in folgenden UnivIS-Modulen
Startsemester WS 2022/2023:
AI-enabled wireless networks (AInet)

Institution: Lehrstuhl für Informatik 7 (Rechnernetze und Kommunikationssysteme)
UnivIS ist ein Produkt der Config eG, Buckenhof