

Modulbezeichnung: Elektrische Maschinen I (EAM-EM I-V) 5 ECTS

(Electrical machines I)

Modulverantwortliche/r: Ingo Hahn Lehrende: Ingo Hahn

Startsemester: WS 2022/2023 Dauer: 1 Semester Turnus: jährlich (WS) Präsenzzeit: 60 Std. Eigenstudium: 90 Std. Sprache: Deutsch

Lehrveranstaltungen:

Elektrische Maschinen I (WS 2022/2023, Vorlesung, 2 SWS, Ingo Hahn)

Übungen zu Elektrische Maschinen I (WS 2022/2023, Übung, 2 SWS, Philipp Sisterhenn)

Inhalt:

Elektrische Maschinen I

Einleitung

Gleichstrommotoren: Aufbau und Wirkungsweise, Spannung, Drehmoment und Leistung, Kommutierung und Wendepole, Ankerrückwirkung und Kompensationswicklung, Permanenterregte Gleichstrommaschine Schaltungen und Betriebsverhalten

Drehstrommotoren: Allgemeines zu Drehfeldmaschinen, Drehfeldtheorie, Asynchronmaschine mit Schleifring- und Käfigläufer, Elektrisch erregte Synchronmaschine, Permanenterregte Synchronmaschine

Electric machines I

Introduction

DC-motors: Construction and operating principle, Voltage, torque and power, Commutation and commutating poles, Armature reaction and compensation winding, Permanent-field DC-machine, Circuits and operational behaviour

Three-phase motors: General aspects to three-phase machines, Rotating field theory, Induction machine with slip ring rotor and squirrel cage rotor, Electrical excited synchronous machine, Permanent-field synchronous machine

Ziel

Die Studierenden sind nach der Teilnahme in der Lage, die Theorie der Entstehung von magnetischen Luftspaltfeldern anzuwenden und deren Eigenschaften zu analysieren, das stationäre Betriebsverhalten der Kommutator-Gleichstrommaschine bei verschiedenen Schaltungsvarianten zu analysieren, sowie das stationäre Betriebsverhalten der Asynchronmaschine und der Synchronmaschine zu analysieren und zu bewerten.

Aim:

After the participation the students are able to apply Maxwell´s theory on the creation of magnetic air gap fields, to analyze the air gap field´s properties, to analyze the stationary operating behaviour of the different brushed DC-machines, and to analyze and evaluate the basic stationary operating behaviour of the induction machine and the synchronous machine.

Lernziele und Kompetenzen:

Nach der Teilnahme sind die Studierenden in der Lage,

- die Gleichstrommaschine, die Asynchronmaschine und die Synchronmaschine zu benennen und deren Betriebseigenschaften darzulegen,
- die Maxwell'sche Theorie zur Beschreibung und Voraussage der in elektrischen Maschinen vorkommenden Luftspaltfelder anzuwenden,
- die in elektrischen Maschinen vorkommenden Luftspaltfelder und deren harmonischen Anteile zu ermitteln und hinsichtlich ihrere Einflüsse auf das Betriebsverhalten zu klassifizieren,
- das stationäre Betriebsverhalten der unterschiedlichen Maschinenkonzepte einzuschätzen, Kriterien für die Auswahl elektrischer Maschinen für eine vorliegende Antriebsaufgabe aufzustellen und sich für den speziellen Einsatzfall für eine Maschinenvariante zu entscheiden.

Literatur:

Skript

Script accompanying the lecture

UnivIS: 14.05.2024 05:20

Verwendbarkeit des Moduls / Einpassung in den Musterstudienplan:

Das Modul ist im Kontext der folgenden Studienfächer/Vertiefungsrichtungen verwendbar:

[1] Energietechnik (Master of Science)

(Po-Vers. 2018w | TechFak | Energietechnik (Master of Science) | Gesamtkonto | Studienrichtung Elektrische Energietechnik | Modulgruppe Elektrische Antriebe und Maschinen (EAM) | Elektrische Maschinen I)

Dieses Modul ist daneben auch in den Studienfächern "Berufspädagogik Technik (Bachelor of Science)", "Berufspädagogik Technik (Master of Education)", "Elektromobilität-ACES (Bachelor of Science)", "Elektrotechnik, Elektronik und Informationstechnik (Bachelor of Science)", "Elektrotechnik, Elektronik und Informationstechnik (Master of Science)", "Mechatronik (Master of Science)", "Wirtschaftsingenieurwesen (Master of Science)" verwendbar

Studien-/Prüfungsleistungen:

Elektrische Maschinen I_ (Prüfungsnummer: 65701) Prüfungsleistung, Klausur, Dauer (in Minuten): 90 Anteil an der Berechnung der Modulnote: 100%

Erstablegung: WS 2022/2023, 1. Wdh.: SS 2023

1. Prüfer: Ingo Hahn

UnivIS: 14.05.2024 05:20