UnivIS
Informationssystem der Friedrich-Alexander-Universität Erlangen-Nürnberg © Config eG 
FAU Logo
  Sammlung/Stundenplan    Modulbelegung Home  |  Rechtliches  |  Kontakt  |  Hilfe    
Suche:      Semester:   
 Lehr-
veranstaltungen
   Personen/
Einrichtungen
   Räume   Forschungs-
bericht
   Publi-
kationen
   Internat.
Kontakte
   Examens-
arbeiten
   Telefon &
E-Mail
 
 
 Darstellung
 
Druckansicht

 
 
Einrichtungen >> Technische Fakultät (TF) >> Department Informatik (INF) >> Lehrstuhl für Informatik 10 (Systemsimulation) >>
Simulation of self-propelled microorganisms

The collective swarming behavior of numerous self-propelled microorganisms at low Reynolds number (Stokes flow), e.g. a swarm of Escherichia coli (E. coli) bacteria, is still inadequately understood. Several analytical and numerical studies have been performed to gain insight into the behavior of a single or a couple of such self-driven devices. However, most of these approaches are limited to simple geometries of the swimming device or the surrounding channel domain. Reaching the required high density of swimmers is one of the challenges that has to be solved in order to observe phenomena like pattern formation or self- organization.
In our project we consistently couple our lattice Boltzmann fluid simulation framework waLBerla (widely applicable Lattice Boltzmann solver from Erlangen) with our rigid body simulation tool pe. This allows us to simulate self- propelled devices consisting of fully resolved rigid bodies of arbitrary shape in 3D. An effortless exchange of the constituents of the considered micro devices, adapting the surrounding channel geometry according to our needs, or regarding regimes beyond low Reynolds numbers are only some of the potential benefits associated with the use of this coupled software framework.
Projektleitung:
Prof. Dr. Ulrich Rüde, Prof. Dr.-Ing. Harald Köstler, Akad. Dir.

Beteiligte:
Prof. Dr. Ana-Suncana Smith, Prof. Dr. Klaus Mecke, Dr.-Ing. Kristina Pickl, M. Sc., Dr. Jayant Pande

Stichwörter:
Stokes flow, Self-propelled microorganism, Lattice Boltzmann method, Numerical simulation, Computational Fluid Dynamics

Beginn: 1.1.2011

Förderer:
EAM Cluster of Excellence Engineering of Advanced Materials

Publikationen
Pickl, Kristina ; Götz, Jan ; Iglberger, Klaus ; Pande, Jayant ; Mecke, Klaus ; Smith, Ana-Suncana ; Rüde, Ulrich: All good things come in threes - Three beads learn to swim with lattice Boltzmann and a rigid body solver. In: Journal of Computational Science 3 (2012), Nr. 5, S. 374-387
[doi>10.1016/j.jocs.2012.04.009]
Pickl, Kristina ; Hofmann, Matthias ; Preclik, Tobias ; Köstler, Harald ; Smith, Ana-Suncana ; Rüde, Ulrich: Parallel Simulations of Self-propelled Microorganisms. In: Bader, Michael ; Bode, Arndt ; Bungartz, Hans-Joachim ; Gerndt, Michael ; Joubert, Gerhard R. ; Peters, Frans (Hrsg.) : Parallel Computing: Accelerating Computational Science and Engineering (CSE). Clifton, Amsterdam, Tokyo : IOS Press, 2014, (Advances in Parallel Computing Bd. 25), S. 395-404. - ISBN 978-1-61499-381-0
[doi>10.3233/978-1-61499-381-0-395]
UnivIS ist ein Produkt der Config eG, Buckenhof