Grundlagen
|
Labcourse: Optical Material and Systems [OMS/LAB] -
- Dozentinnen/Dozenten:
- Nicolas Joly, Angela M. Perez Castaneda
- Angaben:
- Praktikum, 2 SWS, Schein, ECTS: 2,5, nur Fachstudium
- Termine:
- Fr, 6:00 - 12:00, AOT-Praktikumslabor
Do, Mo, 15:00 - 21:00, AOT-Praktikumslabor
Displayed times are just option. Actual time slots will be discussed in preliminary meeting on 17th April
Vorbesprechung: Freitag, 17.4.2015, 17:00 - 18:00 Uhr, AOT-Kursraum
- Studienrichtungen / Studienfächer:
- WPF AOT-GL ab 2
|
|
Light Scattering.: Lecture -
- Dozent/in:
- Andreas Paul Fröba
- Angaben:
- Vorlesung, 2 SWS, ECTS: 5
- Termine:
- Di, 12:15 - 13:45, AOT-Kursraum
Einzeltermin am 5.5.2015, 12:15 - 13:45, AOT-Bibliothek
ab 21.4.2015
- Studienrichtungen / Studienfächer:
- WPF AOT-GL 2-3
- Inhalt:
- Rayleigh- and Brillouin scattering in homogenous systems
Mie scattering in heterogenous systems
Dynamic light scattering (DLS)
Static light scattering (QSLS)
Forced Rayleigh Scattering (FRS)
Particle Image Velocimetry (PIV)
Rayleigh und Filtered Rayleigh Scattering
laser induced fluorescence
laser and phaseal doppler anemometry (LDA/PDA)
Raman scattering
coherent Anti-Atokes-Raman-Scattering (CARS)
|
|
Linear and non-linear fibre optics [LinNLFO] -
- Dozentinnen/Dozenten:
- Meinert Jordan, Bernhard Schmauß
- Angaben:
- Vorlesung, 2 SWS, Schein, ECTS: 5, nur Fachstudium
- Termine:
- Do, 14:15 - 15:45, HF-Technik: SR 5.14
Einzeltermine am 11.6.2015, 9.7.2015, 14:15 - 15:45, HF-Technik: BZ 6.18
- Studienrichtungen / Studienfächer:
- WPF AOT-GL ab 2
|
|
Optical Manufacturing Metrology [OMM] -
- Dozent/in:
- Tino Hausotte
- Angaben:
- Vorlesung, 2 SWS
- Termine:
- Fr, 10:00 - 11:30, K1-119
- Studienrichtungen / Studienfächer:
- WPF AOT-GL ab 2
- Voraussetzungen / Organisatorisches:
-
- Inhalt:
- Introduction: manufacturing metrology and main task: fields of industrial metrology, main tasks (control the conformity, readjusting/correcting of process parameters), objectives and aims (ensure the function, interchangeability, correction parameters for manufacturing processes) • measuring, testing, monitoring • equipment in manufacturing metrology • optics (theories: quantum, wave, ray), effects, properties and principles of measurement
Geometrical tolerances: basic (GPS) Framework, duality principle and operations (partition, extraction, filtration, association, collection, construction) • definitions of geometric elements, standard geometrical elements • geometrical parameters of workpieces, classification system for form deviations • linear and angular dimensions (terms and definitions) • ISO-system for tolerances of linear sizes (terms and definitions, types of fits, code system) • symbols and drawing indication of geometrical tolerances • definition of form tolerances • datums • orientation, location and run-out tolerances • several essential specifications for GPS (CT, E, M, F) • surface texture parameters (determination, types)
Measurement and Evaluation Strategies: determination of measurement strategy, probing strategy and evaluation strategy (Minimum and recommended number of probing points, Nyquist‘s Criterion, probing of feature segments, evaluation criteria) • influences on the uncertainty of measurement results (uncertainty of measurement, Golden Rule)
Optical Principles and Components: Theories of optics • Geometrical optics (reflection, refraction, fibre optic components, ray tracing, lenses, aberration, beam splitter, mirrors, prisms, reflectors) • Wave optics (wave equations, polarisation, polarisers, beam-splitting polarisers, coherence and interference, diffraction ) • Quantum optics (spontaneous emission, light-emitting-diodes and detectors, stimulated emission, laser, photoelectric effect and detectors)
Tolerances of optical Components: reference wavelengths • testing areas and volumes • dimensioning of lenses and of edges, dimension and protective chamfers • specification of angle • material specification (stress birefringence, bubbles and other inclusions, inhomogeneities and striae) • surface treatment and coating
Scales and Encoders: Abbe comparator principal (traceability, 1th order and 2nd order error, Abbe comparator) • linear encoder (principle, Moiré-effect and reticle, detection of motion direction) • output signals and demodulation of encoder signals (counting and resolution enhancement) • reading head of encoders (imaging and interferential measuring principle, transmitted and reflected light) • reference marks • absolute encoders (U- and V-scanning and Gray code)
Interferometer for length measurements: interference and interferometer • Michelson-Interferometer • superposition of waves, Basics of the interference, Interference of light waves • homodyne and heterodyne principal • interference at a Michelson-Interferometer • interference of a homodyne interferometer • demodulation at a homodyne interferometer (dead path) • demodulation at a heterodyne Interferometer • refractive index of air (dependency, measurement) • coherence (spatial and temporal, interferograms with two monochromatic light, white light) • He-Ne-Laser (modes and mode distances, stability) • interferometer setups and adjustment
Interferometer for surface measurements: interference of equal inclination • interference of equal thickness • multiple beam interference • demodulation with phase shifting (principle, generation of phase shift, unwrapping) • application of Fizeau Interferometry • interference microscopes (setups, evaluation)
Optical Surface Measurements: microscope designs, measuring microscope • numerical aperture and resolution • focus variation • confocal microscope (principle, setups, laser-scanning microscope) • chromatic white-light sensor • laser autofocus method (characteristic curve, principles with astigmatic lens and Foucault knife) • summary: optical probing
- Empfohlene Literatur:
- Yoshizawa, T.: Handbook of optical Metrology: Principles and Applications. Boca Raton, CRC Press, 2009
Gåsvik, K. J.: Optical metrology. New York, Wiley, 2002
Benteley, J. P.: Principles of Measurement Systems. Essex, Prentice Hall, 1995
International Vocabulary of Metrology – Basic and General Concepts and Associated Terms, VIM, 3rd edition, JCGM 200:2008
Internetlinks für weitere Information zum Thema Messtechnik
|
|
Seminar on Solar Energy [SolarSem] -
- Dozentinnen/Dozenten:
- Christoph Pflaum, Christoph J. Brabec, Julian Hornich
- Angaben:
- Seminar, 2 SWS, benoteter Schein, ECTS: 5
- Termine:
- Vorbesprechung: Mittwoch, 15.4.2015, 11:00 - 12:30 Uhr, 3.71
- Studienrichtungen / Studienfächer:
- WF AOT-GL ab 1
| | | Mi | 11:00 - 12:30 | n.V. | |
Brabec, Ch.J. Pflaum, Ch. Hornich, J. | |
Vorbesprechung in Raum 3.71, Martensstr. 7 (WW) am 15.04.2015, 11-12.30 Uhr |
|
Physik der Biosensorik / Physics of Biosensing -
- Dozent/in:
- Frank Vollmer
- Angaben:
- Vorlesung, 2 SWS, ECTS: 5, nur Fachstudium, mündliche Prüfung: Dauer 20 Minuten
- Termine:
- Do, 13:00 - 14:30, HF
- Studienrichtungen / Studienfächer:
- WF AOT-GL ab 1
- Voraussetzungen / Organisatorisches:
- Die Vorlesung richtet sich an B.S. und M.S. Studenten der Physik, Ingenieurwissenschaften (Elektro-, Mechanik-) als auch an Studenten der Biologie (v.a. Integrated Life Science Studenten).
Siehe auch Links http://mpl.mpg.de/mpf/php/bfp/index.html und http://www.mpl.mpg.de/personal/hschwefel/doku.php?id=start
- Inhalt:
- Fundamentals of Biophotonics and Biosensing
physical properties of biosensors, with emphasis on optical,electrical and mechanical microsystems
optical, mechanical resonators
light matter interactions (molecular electromagnetism, multipole moments, dielectric and optical properties of molecules, absorption, fluorescence, polarizability)
micro structures in biosensing, signal generation, transduction, amplification, interpretation, frequency domain, time domain (microresonators, QCM, SPR, grating couplers, interferometers, nanoparticles)
instrumentation biosensors, sensor components
biosensors in analytics and clinical diagnostics (molecular interactions, molecular recognition, structurefunction in biomolecules, specific detection, diffusion, biochemical networks)
plasmonics
single molecule detection and single molecule analysis/properties
biology for engineering and physics
Lernziele und Kompetenzen:
Die Studierenden
kennen relevante Grundlagen der Biosensorik
verstehen die Grundlagen der Optik, Mechanik und Elektronik der Biosensorik
kennen die wichtigen Materialparameter, verschiedene Materialklassen sowie biosensorische Systeme
verstehen die Verwendung von Biomolekuelen in der Biosensorik
nennen die Detektionsmechanismen von Biomolekülen in der Biosensorik
können optische, mechanische und elektrische Sensoren entwerfen
erklären die Kopplung biologischer Systeme mit Biosensoren
erklären anhand von Beispielen den Einsatz von optischen Materialien
können die molekularen Gundlagen biosensorischer Prozesse nachvollziehen
kennen die Anwendung der Mikro Strukturen in der Biosensorik, medizinische Diagnostik
- Empfohlene Literatur:
- Hinchcliffe&Munn, Molecular Electromagnetism
Prasad, Biophotonics
Prasad, Nanophotonics
J. D. Jackson, Klassische Elektrodynamik, deGruyter (2006)
Y Yariv, Optical Electronics in Modern Communications, Oxford University Press (1997)
|
|
Optimierung für Ingenieure (Optimization for Engineers) [OptIngV] -
- Dozent/in:
- Johannes Hild
- Angaben:
- Vorlesung mit Übung, 3 SWS, ECTS: 5
- Termine:
- Mo, 16:15 - 17:45, H16
Fr, 10:15 - 11:45, H16
Laboratory instead of lecture every second week.
- Studienrichtungen / Studienfächer:
- WF AOT-GL ab 1
- Voraussetzungen / Organisatorisches:
- This course aims at students of the Faculty of Engineering of all disciplines and is suitable as an elective subject in the Bachelor's and Master's degree.
Requires contents of the lecture Mathematics for Engineers I, II and III. Especially:
Laboratory requires basic knowledge in the implementation of algorithms and data structures in a development environment.
- Inhalt:
- Introduction to continuous optimization problems and methods with and without constraints
Classification of problem types
Optimality conditions and termination criterions
Descent directions and line search methods
Convergence analysis
Unconstrained optimization
Constrained optimization
Outlook
Laboratory
- Empfohlene Literatur:
- Nocedal, Jorge and Wright, Stephen J.: Numerical Optimization. Springer Serie in Operations Research, 2006.
Kelley, C. T.: Iterative Methods for Optimization. Frontiers in Applied Mathematics 18, SIAM Philadelphia 1999;
Polak, E.: Optimization. Algorithms and Consistent Approximations.Applied Mathematical Sciences, Volume 124, Springer-Verlag New York, 1997.
Jarre, F.:Optimierung, Springer 2003;
Hamacher, H.W. and K. Klamroth, K.:Linear and Network Optimization: bilingual textbook. Vieweg 2000
- Schlagwörter:
- optimierung optimization
|
|