UnivIS
Informationssystem der Friedrich-Alexander-Universität Erlangen-Nürnberg © Config eG 
FAU Logo
  Sammlung/Stundenplan    Modulbelegung Home  |  Rechtliches  |  Kontakt  |  Hilfe    
Suche:      Semester:   
 
 Darstellung
 
kompakt

kurz

Druckansicht

 
 
Stundenplan

 
 
 Extras
 
alle markieren

alle Markierungen löschen

 
 
 Außerdem im UnivIS
 
Vorlesungsverzeichnis

Lehrveranstaltungen einzelner Einrichtungen

 
 
Vorlesungs- und Modulverzeichnis nach Studiengängen >> Technische Fakultät (Tech) >> Elitestudiengänge >> Advanced Optical Technologies - Master of Science with Honors (AOT) >>

Grundlagen

 

Labcourse: Optical Material Processing [OMP/PP]

Dozent/in:
Felix Tenner
Angaben:
Praktikum, 2 SWS, ECTS: 2,5, nur Fachstudium
Termine:
Number of places limited; only for students for whom the lab course is mandatory!
Vorbesprechung: Mittwoch, 15.4.2015, 16:00 - 17:30 Uhr, BR MB1
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 2

 

Labcourse: Optical Material and Systems [OMS/LAB]

Dozentinnen/Dozenten:
Nicolas Joly, Angela M. Perez Castaneda
Angaben:
Praktikum, 2 SWS, Schein, ECTS: 2,5, nur Fachstudium
Termine:
Fr, 6:00 - 12:00, AOT-Praktikumslabor
Do, Mo, 15:00 - 21:00, AOT-Praktikumslabor
Displayed times are just option. Actual time slots will be discussed in preliminary meeting on 17th April
Vorbesprechung: Freitag, 17.4.2015, 17:00 - 18:00 Uhr, AOT-Kursraum
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 2

 

Labcourse: Surgery and Biooptics [OM]

Dozent/in:
Florian Stelzle
Angaben:
Praktikum, 2 SWS, ECTS: 2,5
Termine:
Einzeltermine am 29.4.2015, 6.5.2015, 20.5.2015, 27.5.2015, 12:00 - 16:00, AOT-Kursraum
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 2

 

C++ for Numerical Projects in Optics

Dozentinnen/Dozenten:
Nicolas Joly, Birhanu Tamene Abebe
Angaben:
Vorlesung, 4 SWS, Schein, ECTS: 5
Termine:
Di, 14:00 - 18:00, CIP-Pool in der Physik
Studienrichtungen / Studienfächer:
WPF AOT-GL 2

 

Laser Tissue Interaction [LTI]

Dozent/in:
Florian Klämpfl
Angaben:
Vorlesung, 2 SWS, ECTS: 2,5, the exercises for Laser Tissue Interaction are mandatory for this lecture!
Studienrichtungen / Studienfächer:
WPF AOT-GL 2

 
 
Do16:15 - 17:45AOT-Kursraum  Klämpfl, F. 
 

Laser Tissue Interaction Exercises [LTI-E]

Dozentinnen/Dozenten:
Martin Hohmann, Jan Frederik Hagen
Angaben:
Übung, 2 SWS, ECTS: 2,5
Termine:
Fr, 10:15 - 11:45, AOT-Bibliothek
Studienrichtungen / Studienfächer:
WPF AOT-GL 2

 

Light Scattering.: Lecture

Dozent/in:
Andreas Paul Fröba
Angaben:
Vorlesung, 2 SWS, ECTS: 5
Termine:
Di, 12:15 - 13:45, AOT-Kursraum
Einzeltermin am 5.5.2015, 12:15 - 13:45, AOT-Bibliothek
ab 21.4.2015
Studienrichtungen / Studienfächer:
WPF AOT-GL 2-3
Inhalt:
  • Rayleigh- and Brillouin scattering in homogenous systems
  • Mie scattering in heterogenous systems

  • Dynamic light scattering (DLS)

  • Static light scattering (QSLS)

  • Forced Rayleigh Scattering (FRS)

  • Particle Image Velocimetry (PIV)

  • Rayleigh und Filtered Rayleigh Scattering

  • laser induced fluorescence

  • laser and phaseal doppler anemometry (LDA/PDA)

  • Raman scattering

  • coherent Anti-Atokes-Raman-Scattering (CARS)

 

Light Scattering.: Exercise

Dozent/in:
Andreas Paul Fröba
Angaben:
Übung, 2 SWS
Termine:
Do, 14:15 - 15:45, AOT-Kursraum
Studienrichtungen / Studienfächer:
WPF AOT-GL 2-3

 

Linear and non-linear fibre optics [LinNLFO]

Dozentinnen/Dozenten:
Meinert Jordan, Bernhard Schmauß
Angaben:
Vorlesung, 2 SWS, Schein, ECTS: 5, nur Fachstudium
Termine:
Do, 14:15 - 15:45, HF-Technik: SR 5.14
Einzeltermine am 11.6.2015, 9.7.2015, 14:15 - 15:45, HF-Technik: BZ 6.18
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 2

 

Linear and non-linear fibre optics: Exercise [LinNLFO Ex]

Dozent/in:
Meinert Jordan
Angaben:
Übung, 2 SWS
Termine:
Mo, 12:15 - 13:45, HF-Technik: SR 5.14, HF-Technik 6.30
No exercise in the first week! Details will be discussed in the first lecture.
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 2

 

Optical Manufacturing Metrology [OMM]

Dozent/in:
Tino Hausotte
Angaben:
Vorlesung, 2 SWS
Termine:
Fr, 10:00 - 11:30, K1-119
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 2
Voraussetzungen / Organisatorisches:
Inhalt:
  • Introduction: manufacturing metrology and main task: fields of industrial metrology, main tasks (control the conformity, readjusting/correcting of process parameters), objectives and aims (ensure the function, interchangeability, correction parameters for manufacturing processes) • measuring, testing, monitoring • equipment in manufacturing metrology • optics (theories: quantum, wave, ray), effects, properties and principles of measurement
  • Geometrical tolerances: basic (GPS) Framework, duality principle and operations (partition, extraction, filtration, association, collection, construction) • definitions of geometric elements, standard geometrical elements • geometrical parameters of workpieces, classification system for form deviations • linear and angular dimensions (terms and definitions) • ISO-system for tolerances of linear sizes (terms and definitions, types of fits, code system) • symbols and drawing indication of geometrical tolerances • definition of form tolerances • datums • orientation, location and run-out tolerances • several essential specifications for GPS (CT, E, M, F) • surface texture parameters (determination, types)

  • Measurement and Evaluation Strategies: determination of measurement strategy, probing strategy and evaluation strategy (Minimum and recommended number of probing points, Nyquist‘s Criterion, probing of feature segments, evaluation criteria) • influences on the uncertainty of measurement results (uncertainty of measurement, Golden Rule)

  • Optical Principles and Components: Theories of optics • Geometrical optics (reflection, refraction, fibre optic components, ray tracing, lenses, aberration, beam splitter, mirrors, prisms, reflectors) • Wave optics (wave equations, polarisation, polarisers, beam-splitting polarisers, coherence and interference, diffraction ) • Quantum optics (spontaneous emission, light-emitting-diodes and detectors, stimulated emission, laser, photoelectric effect and detectors)

  • Tolerances of optical Components: reference wavelengths • testing areas and volumes • dimensioning of lenses and of edges, dimension and protective chamfers • specification of angle • material specification (stress birefringence, bubbles and other inclusions, inhomogeneities and striae) • surface treatment and coating

  • Scales and Encoders: Abbe comparator principal (traceability, 1th order and 2nd order error, Abbe comparator) • linear encoder (principle, Moiré-effect and reticle, detection of motion direction) • output signals and demodulation of encoder signals (counting and resolution enhancement) • reading head of encoders (imaging and interferential measuring principle, transmitted and reflected light) • reference marks • absolute encoders (U- and V-scanning and Gray code)

  • Interferometer for length measurements: interference and interferometer • Michelson-Interferometer • superposition of waves, Basics of the interference, Interference of light waves • homodyne and heterodyne principal • interference at a Michelson-Interferometer • interference of a homodyne interferometer • demodulation at a homodyne interferometer (dead path) • demodulation at a heterodyne Interferometer • refractive index of air (dependency, measurement) • coherence (spatial and temporal, interferograms with two monochromatic light, white light) • He-Ne-Laser (modes and mode distances, stability) • interferometer setups and adjustment

  • Interferometer for surface measurements: interference of equal inclination • interference of equal thickness • multiple beam interference • demodulation with phase shifting (principle, generation of phase shift, unwrapping) • application of Fizeau Interferometry • interference microscopes (setups, evaluation)

  • Optical Surface Measurements: microscope designs, measuring microscope • numerical aperture and resolution • focus variation • confocal microscope (principle, setups, laser-scanning microscope) • chromatic white-light sensor • laser autofocus method (characteristic curve, principles with astigmatic lens and Foucault knife) • summary: optical probing

Empfohlene Literatur:
  • Yoshizawa, T.: Handbook of optical Metrology: Principles and Applications. Boca Raton, CRC Press, 2009
  • Gåsvik, K. J.: Optical metrology. New York, Wiley, 2002

  • Benteley, J. P.: Principles of Measurement Systems. Essex, Prentice Hall, 1995

  • International Vocabulary of Metrology – Basic and General Concepts and Associated Terms, VIM, 3rd edition, JCGM 200:2008

Internetlinks für weitere Information zum Thema Messtechnik

 

Optical Manufacturing Metrology - Übung [OMM UE]

Dozentinnen/Dozenten:
Tino Hausotte, Bogdan Galovskyi, Andreas Loderer
Angaben:
Übung, 2 SWS
Termine:
Fr, 8:15 - 9:45, K1-119
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 2
Voraussetzungen / Organisatorisches:
Vortragssprache: Englisch

 

Signal processing in optical communication systems [OIC/SP]

Dozent/in:
Henning Bülow
Angaben:
Vorlesung, 2 SWS, Schein, ECTS: 2,5
Termine:
Einzeltermine am 8.5.2015, 9.5.2015, 22.5.2015, 23.5.2015
The lecture had to be cancelled! It might be repeated in a later semester.
Studienrichtungen / Studienfächer:
WPF AOT-GL 3

 

Advanced Laser

Dozent/in:
Nicolas Joly
Angaben:
Vorlesung mit Übung, 4 SWS, Schein, ECTS: 5
Termine:
Fr, 13:00 - 17:00, AOT-Kursraum
Einzeltermin am 15.5.2015, 13:00 - 17:00, AOT-Bibliothek
Studienrichtungen / Studienfächer:
WPF AOT-GL 2-3
Inhalt:
The lecture will cover the following topics:
  • Gaussian optics, design and stability of a laser cavity

  • Rate equation and dynamics of a laser

  • Short and ultrashort laser pulses: Q-switch vs Mode-locking.

  • Detection and characterization of laser pulse

 

Computational Optics CE & MAOT [CompOptCE+MAOT]

Dozent/in:
Christoph Pflaum
Angaben:
Vorlesung mit Übung, 2 SWS, ECTS: 7,5
Termine:
Mo, 10:15 - 11:45, Übung 3 / 01.252-128
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 1

 

Exercises in Computational Optics CE & MAOT

Dozentinnen/Dozenten:
Rainer Hartmann, Birhanu Tamene Abebe
Angaben:
Übung, 2 SWS, benoteter Schein, nur Fachstudium
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 1

 
 
Mo
Mi
12:15 - 13:45
10:15 - 11:45
Übung 3 / 01.252-128
Übung 3 / 01.252-128
  Hartmann, R.
Abebe, B.T.
 
 
 
Do12:15 - 13:45Übung 3 / 01.252-128  Hartmann, R.
Abebe, B.T.
 
 

Image Processing in Optical Nanoscopy [IPNano]

Dozentinnen/Dozenten:
Harald Köstler, Gerald Donnert
Angaben:
Vorlesung mit Übung, ECTS: 5, geeignet als Schlüsselqualifikation
Termine:
Mo, 8:15 - 9:45, 00.151-113
VL findet im Block statt, date for excursion to OICE is on 18.5.15 at 9:00, Dr. Donnert will give his lecture on 29.5. at 15:00 in room 00.133 (Cauerstr. 11, Neubau Informatik/Mathe), next lecture is on 17th of July at 10:00 in room 00.133
Studienrichtungen / Studienfächer:
WPF AOT-GL ab 1
Voraussetzungen / Organisatorisches:
Interessenten melden sich per Mail bei harald.koestler@informatik.uni-erlangen.de

 

Optical properties of modern materials

Dozent/in:
Oleksandr Zhuromskyy
Angaben:
Vorlesung mit Übung, 4 SWS
Termine:
Mo, 14:15 - 15:45, AOT-Kursraum
Fr, 10:15 - 11:45, AOT-Kursraum
Einzeltermin am 4.5.2015, 14:15 - 15:45, AOT-Bibliothek
Studienrichtungen / Studienfächer:
WPF AOT-GL 2-3

 

Seminar on Solar Energy [SolarSem]

Dozentinnen/Dozenten:
Christoph Pflaum, Christoph J. Brabec, Julian Hornich
Angaben:
Seminar, 2 SWS, benoteter Schein, ECTS: 5
Termine:
Vorbesprechung: Mittwoch, 15.4.2015, 11:00 - 12:30 Uhr, 3.71
Studienrichtungen / Studienfächer:
WF AOT-GL ab 1

 
 
Mi11:00 - 12:30n.V.  Brabec, Ch.J.
Pflaum, Ch.
Hornich, J.
 
Vorbesprechung in Raum 3.71, Martensstr. 7 (WW) am 15.04.2015, 11-12.30 Uhr
 

Basic Course in optics V: Nonlinear optics

Dozent/in:
Nicolas Joly
Angaben:
Vorlesung, 2 SWS, nur Fachstudium, other courses not needed to attend this course
Termine:
Mi, 9:00 - 11:00, SR 01.779
Studienrichtungen / Studienfächer:
WF AOT-GL ab 1

 

Übung zu Basic Course in optics V:Nonlinear optics

Dozent/in:
Nicolas Joly
Angaben:
Übung, 2 SWS, nur Fachstudium, other courses not needed to attend this course
Termine:
Mo, Mi, 16:00 - 18:00, SR 01.779
Studienrichtungen / Studienfächer:
WF AOT-GL ab 1

 

Physik der Biosensorik / Physics of Biosensing

Dozent/in:
Frank Vollmer
Angaben:
Vorlesung, 2 SWS, ECTS: 5, nur Fachstudium, mündliche Prüfung: Dauer 20 Minuten
Termine:
Do, 13:00 - 14:30, HF
Studienrichtungen / Studienfächer:
WF AOT-GL ab 1
Voraussetzungen / Organisatorisches:
Die Vorlesung richtet sich an B.S. und M.S. Studenten der Physik, Ingenieurwissenschaften (Elektro-, Mechanik-) als auch an Studenten der Biologie (v.a. Integrated Life Science Studenten). Siehe auch Links http://mpl.mpg.de/mpf/php/bfp/index.html und http://www.mpl.mpg.de/personal/hschwefel/doku.php?id=start
Inhalt:
Fundamentals of Biophotonics and Biosensing
  • physical properties of biosensors, with emphasis on optical,electrical and mechanical microsystems

  • optical, mechanical resonators

  • light matter interactions (molecular electromagnetism, multipole moments, dielectric and optical properties of molecules, absorption, fluorescence, polarizability)

  • micro structures in biosensing, signal generation, transduction, amplification, interpretation, frequency domain, time domain (microresonators, QCM, SPR, grating couplers, interferometers, nanoparticles)

  • instrumentation biosensors, sensor components

  • biosensors in analytics and clinical diagnostics (molecular interactions, molecular recognition, structurefunction in biomolecules, specific detection, diffusion, biochemical networks)

  • plasmonics

  • single molecule detection and single molecule analysis/properties

  • biology for engineering and physics

Lernziele und Kompetenzen: Die Studierenden

  • kennen relevante Grundlagen der Biosensorik

  • verstehen die Grundlagen der Optik, Mechanik und Elektronik der Biosensorik

  • kennen die wichtigen Materialparameter, verschiedene Materialklassen sowie biosensorische Systeme

  • verstehen die Verwendung von Biomolekuelen in der Biosensorik

  • nennen die Detektionsmechanismen von Biomolekülen in der Biosensorik

  • können optische, mechanische und elektrische Sensoren entwerfen

  • erklären die Kopplung biologischer Systeme mit Biosensoren

  • erklären anhand von Beispielen den Einsatz von optischen Materialien

  • können die molekularen Gundlagen biosensorischer Prozesse nachvollziehen

  • kennen die Anwendung der Mikro Strukturen in der Biosensorik, medizinische Diagnostik

Empfohlene Literatur:
  • Hinchcliffe&Munn, Molecular Electromagnetism
  • Prasad, Biophotonics

  • Prasad, Nanophotonics

  • J. D. Jackson, Klassische Elektrodynamik, deGruyter (2006)

  • Y Yariv, Optical Electronics in Modern Communications, Oxford University Press (1997)

 

Übungen zur Vorlesung Physik der Biosensorik /Exercises Physics of Biosensing

Dozent/in:
Frank Vollmer
Angaben:
Übung, 1 SWS
Termine:
jede 2. Woche Do, 14:30 - 16:00, HF
Studienrichtungen / Studienfächer:
WF AOT-GL ab 1

 

Optimierung für Ingenieure (Optimization for Engineers) [OptIngV]

Dozent/in:
Johannes Hild
Angaben:
Vorlesung mit Übung, 3 SWS, ECTS: 5
Termine:
Mo, 16:15 - 17:45, H16
Fr, 10:15 - 11:45, H16
Laboratory instead of lecture every second week.
Studienrichtungen / Studienfächer:
WF AOT-GL ab 1
Voraussetzungen / Organisatorisches:
This course aims at students of the Faculty of Engineering of all disciplines and is suitable as an elective subject in the Bachelor's and Master's degree.
Requires contents of the lecture Mathematics for Engineers I, II and III. Especially:
  • Linear algebra

  • Analysis of real valued functions

  • Differential and integral calculus in multi dimensional spaces

Laboratory requires basic knowledge in the implementation of algorithms and data structures in a development environment.

Inhalt:
Introduction to continuous optimization problems and methods with and without constraints
  • Classification of problem types

  • Optimality conditions and termination criterions

  • Descent directions and line search methods

  • Convergence analysis

Unconstrained optimization

  • Steepest descent and conjugate gradient

  • Newton-type methods

  • Nonlinear Least Squares

Constrained optimization

  • Projection methods

  • Trust Region

  • Barrier and penalty methods

Outlook

  • Linear programming and simplex method

  • Integer programming

  • Noisy functions

Laboratory

  • Introduction to MATLAB

  • Implementation of optimization algorithms

  • Algorithmic optimization of test problems

Empfohlene Literatur:
Nocedal, Jorge and Wright, Stephen J.: Numerical Optimization. Springer Serie in Operations Research, 2006.
Kelley, C. T.: Iterative Methods for Optimization. Frontiers in Applied Mathematics 18, SIAM Philadelphia 1999;
Polak, E.: Optimization. Algorithms and Consistent Approximations.Applied Mathematical Sciences, Volume 124, Springer-Verlag New York, 1997.
Jarre, F.:Optimierung, Springer 2003;
Hamacher, H.W. and K. Klamroth, K.:Linear and Network Optimization: bilingual textbook. Vieweg 2000
Schlagwörter:
optimierung optimization



UnivIS ist ein Produkt der Config eG, Buckenhof