

Modulbezeichnung: Numerische und Experimentelle Modalanalyse (NEMA) 5 ECTS

(Numerical and Experimental Modal Analysis)

Modulverantwortliche/r: Kai Willner

Lehrende: Özge Akar, Kai Willner

Startsemester: WS 2021/2022 Dauer: 1 Semester Turnus: jährlich (WS)
Präsenzzeit: 60 Std. Eigenstudium: 90 Std. Sprache: Deutsch

Lehrveranstaltungen:

Numerische und Experimentelle Modalanalyse (WS 2021/2022, Vorlesung, 2 SWS, Kai Willner) Übungen zur Numerischen und Experimentellen Modalanalyse (WS 2021/2022, Übung, 2 SWS, Özge Akar)

Empfohlene Voraussetzungen:

Kenntnisse aus dem Modul "Technische Schwinungslehre (TSL)"

Inhalt:

Numerische Modalanalyse

- Numerische Lösung des Eigenwertproblems
- Modale Reduktion
- Dämpfungs-, Massen- und Punktmassenmatrizen
- Lösung der Bewegungsgleichungen, Zeitschrittintegration

Experimentelle Modalanalyse

- Grundlagen der Signalanalyse: Fourier-Transformation, Aliasing, Leakage
- Experimentelle Analyse im Zeit- und Frequenzbereich

Lernziele und Kompetenzen:

Fachkompetenz

Wissen

- Die Studierenden kennen die analytische Lösung für die freie Schwingung einfacher Kontinua wie Stab und Balken.
- Die Studierenden kennen verschiedene Verfahren zur Lösung des Eigenwertproblems.
- Die Studierenden kennen die Methode der modalen Reduktion.
- Die Studierenden kennen verschiedene Möglichkeiten der Dämpfungsbeschreibung.
- Die Studierenden kennen den Unterschied zwischen der konsistenten Massenmodellierung und Punktmassen.
- Die Studierenden kennen verschiedene Verfahren zur Zeitschrittintegration.
- Die Studierenden kennen die Grundlagen der Signalanalyse im Frequenzbereich auf der Basis der Fouriertransformation.
- Die Studierenden kennen die Voraussetzungen für die Anwendbarkeit der numerischen und experimentellen Modalanalyse.
- Die Studierenden kennen die prinzipielle Vorgehensweise bei der experimentellen Modalanalyse sowie die entsprechenden Fachtermini.
- Die Studierenden kennen verschiedene Messaufnehmer und Anregungsverfahren.
- Die Studierenden kennen die verschiedenen Übertragungsfrequenzgänge und Verfahren zur Bestimmung der modalen Parameter.
- Die Studierenden kennen verschiedene Verfahren zur Überprüfung der Linearität eines Systems.

Verstehen

- Die Studierenden können die Probleme bei der numerischen Dämpfungsmodellierung erläutern.
- Die Studierenden können die Vor- und Nachteile der unterschiedlichen Massenmodellierungen erklären sowie den Einfluss auf die Eigenwerte bei verschiedenen Elementtypen erläutern.
- Die Studierenden verstehen das Shannonsche Abtasttheorem und können damit den Einfluss von Abtastauflösung und Abtastlänge auf das Ergebnis der diskreten Fouriertransformation erläutern.

UnivIS: 23.05.2024 07:06

- Die Studierenden können die Probleme des Aliasing und des Leakage erklären und Maßnahmen zur Vermeidung bzw. Reduktion dieser Fehler erläutern.
- Die Studierenden verstehen den Einfluß verschiedener Lagerungs- und Anregungsarten der zu untersuchenden Struktur auf das Messergebnis.
- Die Studierenden verstehen den Zusammenhang der verschiedenen Übertragungsfrequenzgänge und können diesen zum Beispiel anhand der Nyquist-Diagramme erklären.

Anwenden

- Die Studierenden können das Verfahren der simultanen Vektoriteration zur Bestimmung von Eigenwerten und -vektoren implementieren.
- Die Studierenden können verschiedene Zeitschrittintegrationsverfahren implementieren.
- Die Studierenden können eine Signalanalyse im Frequenzbereich mit Hilfe kommerzieller Programme durchführen.
- Die Studierenden können verschiedene Übertragungsfrequenzgänge ermitteln und daraus die modalen Parameter bestimmen.

Analysieren

- Die Studierenden können eine geeignete Dämpfungs- und Massenmodellierung für die numerische Modalanalyse auswählen.
- Die Studierenden können ein problemangepasstes Verfahren zur Lösung des Eigenwertproblems auswählen.
- Die Studierenden können ein problemangepasstes Zeitschrittintegrationsverfahren auswählen.
- Die Studierenden können für eine gegebene Messaufgabe einen Versuchsaufbau mit geeigneter Lagerung und Anregung der Struktur konzipieren.
- Die Studierenden können für eine gegebene Messaufgabe eine passende Abtastrate und -dauer sowie entsprechende Filter bzw. Fensterfunktionen wählen.
- Die Studierenden k\u00f6nnen ein geeignetes D\u00e4mpfungsmodell zur Bestimmung der modalen D\u00e4mpfungen ausw\u00e4hlen.

Evaluieren (Beurteilen)

- Die Studierenden können eine numerische Eigenwertlösung anhand verschiedener Kriterien wie verwendetes Verfahren, Dämpfungs- und Massenmodellierung kritisch beurteilen und gegebenenfalls qualifizierte Verbesserungsvorschläge machen.
- Die Studierenden k\u00f6nnen eine numerische L\u00f6sung im Zeitbereich anhand verschiedener Kriterien wie verwendetes Verfahren, Zeitschrittweite etc. kritisch beurteilen und gegebenenfalls qualifizierte Verbesserungsvorschl\u00e4ge machen.
- Die Studierenden können das Ergebnis einer Fourier-Signalanalyse kritisch beurteilen, eventuelle Fehler bei der Messung erkennen und sinnvolle Maßnahmen zur Verbesserung aufzeigen.
- Die Studierenden können die experimentell ermittelten modalen Parameter anhand verschiedener Kriterien wie zum Beispiel MAC-Werte beurteilen.
- Die Studierenden können die Voraussetzungen für die Anwendbarkeit der Modalanalyse anhand von Linearitätstests überprüfen und beurteilen.
- Die Studierenden können die Ergebnisse einer numerischen und experimentellen Modalanalyse kritisch vergleichen, qualifizierte Aussagen über die jeweilige Modellgüte machen und gegebenenfalls Vorschläge zur Verbesserung machen.

Literatur:

- Bode, H.: Matlab-Simulink: Analyse und Simulation dynamischer Systeme. Stuttgart, Teubner, 2006
- Bathe, K.; Finite-Elemente-Methoden. Berlin, Springer, 2001
- Ewins, D.J.: Modal Testing. Research Studies Press, 2000

Verwendbarkeit des Moduls / Einpassung in den Musterstudienplan:

Das Modul ist im Kontext der folgenden Studienfächer/Vertiefungsrichtungen verwendbar:

[1] 123#67#H

(Po-Vers. 2013 | TechFak | Computational Engineering (Master of Science with Honours) | Gesamtkonto | Wahl-pflichtbereich Technisches Anwendungsfach | Solid Mechanics and Dynamics | Numerische und experimentelle Modalanalyse)

UnivIS: 23.05.2024 07:06

[2] Berufspädagogik Technik (Bachelor of Science)

(Po-Vers. | TechFak | Berufspädagogik Technik (Bachelor of Science) | Gesamtkonto | Wahlpflichtmodule Fachwissenschaft | Numerische und experimentelle Modalanalyse)

[3] Berufspädagogik Technik (Bachelor of Science)

(Po-Vers. 2011 | TechFak | Berufspädagogik Technik (Bachelor of Science) | Studienrichtung Metalltechnik | Wahlpflichtmodule Fachwissenschaft | Numerische und experimentelle Modalanalyse)

[4] Berufspädagogik Technik (Bachelor of Science)

(Po-Vers. 2020w | TechFak | Berufspädagogik Technik (Bachelor of Science) | Studienrichtung Metalltechnik | Gesamtkonto | Wahlpflichtmodule Fachwissenschaft | Numerische und experimentelle Modalanalyse)

[5] Berufspädagogik Technik (Master of Education): 3-4. Semester

(Po-Vers. 2010 | TechFak | Berufspädagogik Technik (Master of Education) | Studienrichtung Metalltechnik (Masterprüfungen) | Wahlpflichtmodule Fachwissenschaft | Wahlpflichtmodule (Vertiefungsmodule) | Numerische und experimentelle Modalanalyse)

[6] Berufspädagogik Technik (Master of Education)

(Po-Vers. 2018w | TechFak | Berufspädagogik Technik (Master of Education) | Gesamtkonto | Wahlpflichtmodule Fachwissenschaft | Wahlpflichtmodule (Vertiefungsmodule) | Numerische und experimentelle Modalanalyse)

[7] Berufspädagogik Technik (Master of Education)

(Po-Vers. 2020w | TechFak | Berufspädagogik Technik (Master of Education) | Gesamtkonto | Wahlpflichtmodule Fachwissenschaft | Wahlpflichtmodule (Vertiefungsmodule) | Numerische und experimentelle Modalanalyse)

[8] Computational Engineering (Master of Science)

(Po-Vers. 2016w | TechFak | Computational Engineering (Master of Science) | Gesamtkonto | Wahlpflichtbereich Technisches Anwendungsfach | Solid Mechanics and Dynamics | Numerische und experimentelle Modalanalyse)

[9] Computational Engineering (Rechnergestütztes Ingenieurwesen) (Bachelor of Science)

(Po-Vers. 2009 | TechFak | Computational Engineering (Rechnergestütztes Ingenieurwesen) (Bachelor of Science) | alte Prüfungsordnungen | Gesamtkonto | Technische Wahlmodule | Numerische und experimentelle Modalanalyse)

[10] Computational Engineering (Rechnergestütztes Ingenieurwesen) (Master of Science)

(Po-Vers. 2013 | TechFak | Computational Engineering (Rechnergestütztes Ingenieurwesen) (Master of Science) | Gesamtkonto | Wahlpflichtbereich Technisches Anwendungsfach | Solid Mechanics and Dynamics | Numerische und experimentelle Modalanalyse)

[11] Maschinenbau (Bachelor of Science)

(Po-Vers. 2009w | TechFak | Maschinenbau (Bachelor of Science) | Maschinenbau | Gesamtkonto | Wahlmodule | Technische Wahlmodule | Numerische und experimentelle Modalanalyse)

[12] Maschinenbau (Master of Science): 2. Semester

(Po-Vers. 2007 | TechFak | Maschinenbau (Master of Science) | Studienrichtungen Allgemeiner Maschinenbau, Fertigungstechnik, und Rechnergestützte Produktentwicklung | Gesamtkonto | Wahlmodule | Technische Wahlmodule | Numerische und experimentelle Modalanalyse)

[13] Maschinenbau (Master of Science): 2. Semester

(Po-Vers. 2007 | TechFak | Maschinenbau (Master of Science) | Studienrichtungen Allgemeiner Maschinenbau, Fertigungstechnik, und Rechnergestützte Produktentwicklung | Gesamtkonto | Studienrichtung Allgemeiner Maschinenbau | Wahlpflicht-/Vertiefungsbereich in der Studienrichtung Allgemeiner Maschinenbau | Vertiefung 2.2 Höhere Mechanik | Vertiefungsmodul 2.2 | Numerische und experimentelle Modalanalyse)

[14] Maschinenbau (Master of Science): 2. Semester

(Po-Vers. 2007 | TechFak | Maschinenbau (Master of Science) | Studienrichtungen Allgemeiner Maschinenbau, Fertigungstechnik, und Rechnergestützte Produktentwicklung | Gesamtkonto | Studienrichtung Allgemeiner Maschinenbau | Wahlpflicht-/Vertiefungsbereich in der Studienrichtung Allgemeiner Maschinenbau | Vertiefung 2.2 Höhere Mechanik | Vertiefungsmodul 2.2 | Numerische und experimentelle Modalanalyse)

[15] Maschinenbau (Master of Science): 2. Semester

(Po-Vers. 2007 | TechFak | Maschinenbau (Master of Science) | Studienrichtungen Allgemeiner Maschinenbau, Fertigungstechnik, und Rechnergestützte Produktentwicklung | Gesamtkonto | Studienrichtung Rechnergestützte Produktentwicklung | Wahlpflicht-/Vertiefungsbereich in der Studienrichtung Rechnergestützte Produktentwicklung | Vertiefung 2.2 Höhere Mechanik | Vertiefungsmodul 2.2 | Numerische und experimentelle Modalanalyse)

[16] Maschinenbau (Master of Science): 2. Semester

(Po-Vers. 2007 | TechFak | Maschinenbau (Master of Science) | Studienrichtungen Allgemeiner Maschinenbau, Fertigungstechnik, und Rechnergestützte Produktentwicklung | Gesamtkonto | Studienrichtung Rechnergestützte

UnivIS: 23.05.2024 07:06

Produktentwicklung | Wahlpflicht-/Vertiefungsbereich in der Studienrichtung Rechnergestützte Produktentwicklung | Vertiefung 2.2 Höhere Mechanik | Vertiefungsmodul 2.2 | Numerische und experimentelle Modalanalyse)

[17] Maschinenbau (Master of Science)

(Po-Vers. 2013 | TechFak | Maschinenbau (Master of Science) | Studienrichtung International Production Engineering and Management | Gesamtkonto | Vertiefungsmodul | Vertiefungsmodul | Numerische und experimentelle Modalanalyse)

[18] Mechatronik (Bachelor of Science): 5-6. Semester

(Po-Vers. 2007 | TechFak | Mechatronik (Bachelor of Science) | Mechatronik (Studienbeginn bis 30.09.2020) | Gesamtkonto | Wahlpflichtmodule (aus Katalog) | Numerische und experimentelle Modalanalyse)

[19] Mechatronik (Bachelor of Science): 5-6. Semester

(Po-Vers. 2009 | TechFak | Mechatronik (Bachelor of Science) | Mechatronik (Studienbeginn bis 30.09.2020) | Gesamtkonto | Wahlpflichtmodule | 7 Technische Mechanik | 7 Technische Mechanik | Numerische und experimentelle Modalanalyse)

[20] Mechatronik (Bachelor of Science)

(Po-Vers. 2020w | TechFak | Mechatronik (Bachelor of Science) | Mechatronik (Studienbeginn ab 01.10.2020) | Gesamtkonto | Wahlpflichtmodule | 7 Technische Mechanik | Numerische und experimentelle Modalanalyse)

[21] Mechatronik (Bachelor of Science)

(Po-Vers. 2021w | TechFak | Mechatronik (Bachelor of Science) | Mechatronik (Studienbeginn ab 01.10.2021) | Gesamtkonto | Wahlpflichtmodule | 7 Technische Mechanik und Konstruktion | Numerische und experimentelle Modalanalyse)

[22] Mechatronik (Master of Science): 1-3. Semester

(Po-Vers. 2010 | TechFak | Mechatronik (Master of Science) | Gesamtkonto | Wahlpflichtmodule | Katalog | Numerische und experimentelle Modalanalyse)

[23] Mechatronik (Master of Science): 1-3. Semester

(Po-Vers. 2010 | TechFak | Mechatronik (Master of Science) | Gesamtkonto | Vertiefungsrichtungen | Technische Mechanik | Numerische und experimentelle Modalanalyse)

[24] Mechatronik (Master of Science)

(Po-Vers. 2012 | TechFak | Mechatronik (Master of Science) | Mechatronik (Studienbeginn bis 30.09.2020) | Gesamtkonto | M3 Technische Wahlmodule | Numerische und experimentelle Modalanalyse)

[25] Mechatronik (Master of Science)

(Po-Vers. 2012 | TechFak | Mechatronik (Master of Science) | Mechatronik (Studienbeginn bis 30.09.2020) | Gesamtkonto | M1-M2 Vertiefungsrichtungen | 7 Technische Mechanik | 7 Technische Mechanik | Numerische und experimentelle Modalanalyse)

[26] Mechatronik (Master of Science)

(Po-Vers. 2020w | TechFak | Mechatronik (Master of Science) | Mechatronik (Studienbeginn ab 01.10.2020) | Gesamtkonto | M1-M2 Vertiefungsrichtungen | 7 Technische Mechanik | Numerische und experimentelle Modalanalyse)

[27] Mechatronik (Master of Science)

(Po-Vers. 2020w | TechFak | Mechatronik (Master of Science) | Mechatronik (Studienbeginn ab 01.10.2020) | Gesamtkonto | M3 Technische Wahlmodule | Numerische und experimentelle Modalanalyse)

[28] Mechatronik (Master of Science)

(Po-Vers. 2021w | TechFak | Mechatronik (Master of Science) | Mechatronik (Studienbeginn ab 01.10.2021) | Gesamtkonto | M1-M2 Vertiefungsrichtungen | 7 Technische Mechanik und Konstruktion | Numerische und experimentelle Modalanalyse)

[29] Mechatronik (Master of Science)

(Po-Vers. 2021w | TechFak | Mechatronik (Master of Science) | Mechatronik (Studienbeginn ab 01.10.2021) | Gesamtkonto | M3 Technische Wahlmodule | Numerische und experimentelle Modalanalyse)

[30] Medizintechnik (Master of Science)

(Po-Vers. 2013 | TechFak | Medizintechnik (Master of Science) | Studienrichtung Medizinische Produktionstechnik, Gerätetechnik und Prothetik | M2 Ingenieurwissenschaftliche Kernmodule (GPP) | Numerische und experimentelle Modalanalyse)

[31] Medizintechnik (Master of Science)

(Po-Vers. 2018w | TechFak | Medizintechnik (Master of Science) | Studienrichtung Medizinische Produktionstechnik, Gerätetechnik und Prothetik | M2 Ingenieurwissenschaftliche Kernmodule (GPP) | Numerische und experimentelle Modalanalyse)

UnivIS: 23.05.2024 07:06 4

[32] Medizintechnik (Master of Science)

(Po-Vers. 2019w | TechFak | Medizintechnik (Master of Science) | Modulgruppen M1, M2, M3, M5, M7 nach Studienrichtungen | Studienrichtung Medizinische Produktionstechnik, Gerätetechnik und Prothetik | M2 Ingenieurwissenschaftliche Kernmodule (GPP) | Numerische und experimentelle Modalanalyse)

[33] Wirtschaftsingenieurwesen (Master of Science): 1-2. Semester

(Po-Vers. 2009 | TechFak | Wirtschaftsingenieurwesen (Master of Science) | Masterstudiengang Wirtschaftsingenieurwesen (bis 30.09.2018) | Gesamtkonto | Ingenieurwissenschaftliche Studienrichtungen | Technische Wahlmodule | Technische Wahlmodule | Numerische und experimentelle Modalanalyse)

[34] Wirtschaftsingenieurwesen (Master of Science): 1-2. Semester

(Po-Vers. 2009 | TechFak | Wirtschaftsingenieurwesen (Master of Science) | Masterstudiengang Wirtschaftsingenieurwesen (bis 30.09.2018) | Gesamtkonto | Ingenieurwissenschaftliche Studienrichtungen | Studienrichtung Maschinenbau | Vertiefung 2.2 Höhere Mechanik | Vertiefungsmodul | Numerische und experimentelle Modalanalyse)

[35] Wirtschaftsingenieurwesen (Master of Science)

(Po-Vers. 2018w | TechFak | Wirtschaftsingenieurwesen (Master of Science) | Masterstudiengang Wirtschaftsingenieurwesen (Studienbeginn ab 01.10.2018) | Gesamtkonto | Studienrichtung Maschinenbau | 3. Wahlpflichtmodul + Vertiefungsmodul | 2.2 Höhere Mechanik | Vertiefungsmodul 2.2 Höhere Mechanik | Numerische und experimentelle Modalanalyse)

[36] Wirtschaftsingenieurwesen (Master of Science)

(Po-Vers. 2018w | TechFak | Wirtschaftsingenieurwesen (Master of Science) | Masterstudiengang Wirtschaftsingenieurwesen (Studienbeginn ab 01.10.2018) | Gesamtkonto | Studienrichtung Maschinenbau | Technische Wahlmodule und Hochschulpraktikum | Technische Wahlmodule | Numerische und experimentelle Modalanalyse)

[37] Wirtschaftsingenieurwesen (Master of Science)

(Po-Vers. 2018w | TechFak | Wirtschaftsingenieurwesen (Master of Science) | Masterstudiengang Wirtschaftsingenieurwesen (Studienbeginn ab 01.10.2018) | Gesamtkonto | Studienrichtung Elektrotechnik | Technische Wahlmodule und Hochschulpraktikum | Technische Wahlmodule | Numerische und experimentelle Modalanalyse)

[38] Wirtschaftsingenieurwesen (Master of Science)

(Po-Vers. 2021w | TechFak | Wirtschaftsingenieurwesen (Master of Science) | Masterstudiengang Wirtschaftsingenieurwesen Studienrichtung Elektrotechnik (Studienbeginn ab 01.10.2021) | Studienrichtung Elektrotechnik | Technische Wahlmodule und Hochschulpraktikum | Technische Wahlmodule | Numerische und experimentelle Modalanalyse)

[39] Wirtschaftsingenieurwesen (Master of Science)

(Po-Vers. 2021w | TechFak | Wirtschaftsingenieurwesen (Master of Science) | Masterstudiengang Wirtschaftsingenieurwesen Studienrichtung Maschinenbau (Studienbeginn ab 01.10.2021) | Studienrichtung Maschinenbau | Technische Wahlmodule und Hochschulpraktikum | Technische Wahlmodule | Numerische und experimentelle Modalanalyse)

[40] Wirtschaftsingenieurwesen (Master of Science)

(Po-Vers. 2021w | TechFak | Wirtschaftsingenieurwesen (Master of Science) | Masterstudiengang Wirtschaftsingenieurwesen Studienrichtung Maschinenbau (Studienbeginn ab 01.10.2021) | Studienrichtung Maschinenbau | 3. Wahlpflichtmodul + Vertiefungsmodul | 2.2 Höhere Mechanik | Vertiefungsmodul 2.2 Höhere Mechanik | Numerische und experimentelle Modalanalyse)

Studien-/Prüfungsleistungen:

Numerische und experimentelle Modalanalyse (Prüfungsnummer: 72651)

(englische Bezeichnung: Lecture/Tutorial: Numerical and Experimental Modal Analysis)

Prüfungsleistung, Klausur, Dauer (in Minuten): 60 Anteil an der Berechnung der Modulnote: 100%

Erstablegung: WS 2021/2022, 1. Wdh.: SS 2022

1. Prüfer: Kai Willner

UnivIS: 23.05.2024 07:06 5